
h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

MPI/OMP patterns in DFTB+
Ben Hourahine*
University of Strathclyde

* and the DFTB+
developers group

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

MPI/OMP in DFTB+

● DFTB+ can run in either parallelism mode, but has a few places

that benefit from both together

● MPI uses the leader/follower model and splits the

MPI_COMM_WORLD in various ways

● OMP usually used for do loops, typically parallelized “one deep”

● Common code base, compile time decision for enabling MPI

build – cmake and preprocessing of source

https://github.com/dftbplus/mpifx

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

DFTB+ data structures with MPI
● Overlap and hamiltonian relatively sparse, so store in block

compressed matrices with a copy on each communicator
member (with indexing neighbour arrays)

● Dense matrices as BLACS format, typically with nearly
square grid

● Grids for atoms and split COMM_WORLD and grids for
separate k-points/spin groups (similar split for NEGF
transport)

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

DFTB+ MPI choice – funneled
MPI_THREAD_FUNNELED represents a thread support
level.
It is used as part of the MPI_Init_thread initialisation.
MPI_THREAD_FUNNELED is the second level; it informs
MPI that the application is multithreaded, however all MPI
calls will be issued from the master thread only. Other thread
support levels are, in order, MPI_THREAD_SINGLE,
MPI_THREAD_SERIALIZED and MPI_THREAD_MULTIPLE.

https://rookiehpc.com/mpi/docs/mpi_thread_funneled.php

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

Wrapped functionalities
Libraries wrapping functionality for

● MPI
– https://github.com/dftbplus/mpifx

● ScaLAPACK
– https://github.com/dftbplus/mpifx

● + others

Use Fypp for the preprocessing (https://github.com/aradi/fypp)

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/m

p
if
x

6

 !> Initializes a threaded MPI environment.
 !!
 !! \param requiredThreading Threading support required (MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
 !! MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE)
 !! \param proviedeThreading Threading level provided by the MPI-framework. If not present and
 !! the framework offers a lower support than required, the routine stops program execution.
 !! \param error Error code on return. If not present and error code would have been non-zero,
 !! routine aborts program execution.
 !!
 !! \see MPI documentation (\c MPI_INIT)
 !!
 !! Example:
 !!
 !! program test_mpifx
 !! use libmpifx_module
 !! implicit none
 !!
 !! type(mpifx_comm) :: mycomm
 !!
 !! call mpifx_init_thread(MPI_THREAD_FUNNELED)
 !! call mycomm%init()
 !! :
 !! call mpifx_finalize()
 !!
 !! end program test_mpifx
 !!

 subroutine mpifx_init_thread(requiredThreading, providedThreading, error)

MpiFx initialising MPI example

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/m

p
if
x

7

MpiFx comm structure
 !> MPI communicator with some additional information.
 type mpifx_comm
 integer :: id !< Communicator id.
 integer :: size !< Nr. of processes (size).
 integer :: rank !< Rank of the current process.
 integer :: leadrank !< Index of the lead node.
 logical :: lead !< True if current process is the lead (rank == 0).
 contains
 !> Initializes the MPI environment.
 procedure :: init => mpifx_comm_init

 !> Creates a new communicator by splitting the old one.
 procedure :: split => mpifx_comm_split

 !> Creates a new communicator by splitting the old one given a split type.
 procedure :: split_type => mpifx_comm_split_type

 !> Frees the communicator. The communicator should not be used after this.
 procedure :: free => mpifx_comm_free

 end type mpifx_comm

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/m

p
if
x

8

subroutine mpifx_init_thread(requiredThreading, providedThreading, error)
 integer, intent(in) :: requiredThreading
 integer, intent(out), optional :: providedThreading
 integer, intent(out), optional :: error
 :

 call mpi_init_thread(requiredThreading, providedThreading, error)

 if (present(providedThreading)) then
 providedThreading = providedThreading0
 elseif (providedThreading < requiredThreading) then
 write(*, "(A,I0,A,I0,A)") "Error: Provided threading model (",&
 & providedThreading,") is less than required threading model (",&
 & requiredThreading, ")"
 call mpi_abort(MPI_COMM_WORLD, MPIFX_UNHANDLED_ERROR, error0)
 end if

 call handle_errorflag(error, "Error: mpi_init_thread in mpifx_init_thread()",&
 & error)

 end subroutine mpifx_init_thread

MpiFx internals for this
– slightly pseuodo-code

MPI constants are in
numerical order for
thread support level

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

9

 !> Contains MPI related environment settings
 type :: TMpiEnv
 !> Global MPI communicator
 type(mpifx_comm) :: globalComm
 !> Communicator to access processes within current group
 type(mpifx_comm) :: groupComm
 !> Communicator to access equivalent processes in other groups
 type(mpifx_comm) :: interGroupComm
 !> Communicator within the current node
 type(mpifx_comm) :: nodeComm
 !> Size of the process groups
 integer :: groupSize
 !> Number of processor groups
 integer :: nGroup
 !> Group index of the current process (starts with 0)
 integer :: myGroup
 !> Rank of the processes in the given group (with respect of globalComm)
 integer, allocatable :: groupMembersGlobal(:)
 !> Rank of the processes in the given group (with respect of MPI_COMM_WORLD)
 integer, allocatable :: groupMembersWorld(:)
 !> Whether current process is the global lead
 logical :: tGlobalLead
 !> Whether current process is the group lead
 logical :: tGroupLead

DFTB+ MPI structure

Split groups (spins,
K-points,…)

Internal to shared-
memory node (more later)

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

Patterns for today
1) OMP loops broken over MPI COMM

2) Shared memory windows with MPI

3) Re-distribute BLACS for simple OMP operations (WIP)

4) Loops as hidden MPI COMM operations (WIP)

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

11

Pattern 1) Hybrid MPI-OMP loop
 call distributeRangeInChunks(env, 1, nAtom, iAtFirst, iAtLast)

 ! Put 1.0 for the diagonal elements of the overlap.
 !$OMP PARALLEL DO PRIVATE(iAt1, iSp1, ind, iOrb1) DEFAULT(SHARED) SCHEDULE(RUNTIME)
 do iAt1 = iAtFirst, iAtLast
 iSp1 = species(iAt1)
 ind = iPair(0,iAt1) + 1
 do iOrb1 = 1, orb%nOrbAtom(iAt1)
 over(ind) = 1.0_dp
 ind = ind + orb%nOrbAtom(iAt1) + 1
 end do
 end do
 !$OMP END PARALLEL DO

 call buildDiatomicBlocks(iAtFirst, iAtLast, skOverCont, coords, nNeighbourSK, iNeighbours,&
 & species, iPair, orb, over)

 call assembleChunks(env, over)

Overlap matrix set-up example,
looping over atoms.
For overlaps we are;
● block-diagonal on-site
● use a compressed block sparse

array structure for this type of
matrix

diatomic (off diagonal) elements
handled in similar loop

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

12

 !> Distributes a range in chunks over processes within a process group.
 subroutine distributeRangeInChunks(env, globalFirst, globalLast, localFirst, localLast)

 !> Computational environment settings
 type(TEnvironment), intent(in) :: env

 !> First element of the range
 integer, intent(in) :: globalFirst

 !> Last element of the range
 integer, intent(in) :: globalLast

 !> First element to process locally
 integer, intent(out) :: localFirst

 !> Last element to process locally
 integer, intent(out) :: localLast

 #:if WITH_MPI
 call getChunkRanges(env%mpi%groupComm%size, env%mpi%groupComm%rank, globalFirst,&
 & globalLast, localFirst, localLast)
 #:else
 localFirst = globalFirst
 localLast = globalLast
 #:endif

 end subroutine distributeRangeInChunks

Loop partitioning internals

● groupComm divided off from COMM_WORLD
● Data structure in env includes

– size of group
– rank inside group

● globalFirst and globalLast loop ranges
● Analogues for nested loops (not shown)
● And some preprocessing

Non-MPI does whole range

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

13

subroutine getChunkRanges()
 :
 rangeLength = globalLast - globalFirst + 1
 nLocal = rangeLength / groupSize
 remainder = mod(rangeLength, groupSize)

 if (myRank < remainder) then
 nLocal = nLocal + 1
 localFirst = globalFirst + myRank * nLocal
 else
 localFirst = globalFirst + remainder * (nLocal + 1) + (myRank - remainder) * nLocal
 end if

 localLast = min(localFirst + nLocal - 1, globalLast)

end subroutine getChunkRanges

GetChunkRanges internal
● groupSize COMM size
● myRank inside this group

MPI case gets to here

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

14

 !> Assembles the chunks by summing up contributions within a process group.
 subroutine assemble${NAME}$Chunks(env,chunks)

 !> Environment settings
 type(TEnvironment), intent(in) :: env

 !> array to assemble
 ${DTYPE}$, intent(inout) :: chunks${FORTRAN_ARG_DIM_SUFFIX(RANK)}$

 #:if WITH_MPI
 call mpifx_allreduceip(env%mpi%groupComm, chunks, MPI_SUM)
 #:endif

 end subroutine assemble${NAME}$Chunks

Some Fypp directives
here – looped over variable
types and conditional
compilation for MPI

Re-assemble at end of loop
– want all procs to get a copy of resulting array

Re-assembly is just a
reduce over relevant
COMM group

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/m

p
if
x

15

Analogous to OpenMP
with locking and barriers type mpifx_win

 private
 integer, public :: id !< Window id.
 integer :: comm_id !< Communicator id.
 contains
 !> Initializes an MPI shared memory window.
#:for TYPE in TYPES
 generic :: allocate_shared => mpifx_win_allocate_shared_${TYPE_ABBREVS[TYPE]}$
#:endfor
#:for TYPE in TYPES
 procedure, private :: mpifx_win_allocate_shared_${TYPE_ABBREVS[TYPE]}$
#:endfor

 !> Locks a shared memory segment.
 procedure :: lock => mpifx_win_lock
 !> Unlocks a shared memory segment.
 procedure :: unlock => mpifx_win_unlock
 !> Synchronizes shared memory across MPI ranks.
 procedure :: sync => mpifx_win_sync
 !> Deallocates memory associated with a shared memory segment.
 procedure :: free => mpifx_win_free
 end type mpifx_win

– recent contribution from Tobias Melson (MPCDF)

Currently used for neighbour
map generation algorithm in
DFTB+

Incl. barrier

Pattern 2) Shared-memory MPI windows

Splits made from global comm
– splitting sub-communicators
requires affinity or RMA

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

16

call this%globalComm%split_type(MPI_COMM_TYPE_SHARED, this%globalComm%rank,&
 & this%nodeComm)
:
#:if WITH_MPI
 if (associated(neigh%iNeighbourMemory)) then
 call neigh%iNeighbourWin%free()
 nullify(neigh%iNeighbourMemory)
 end if
 dataLength = (maxNeighbour + 1) * nAtom
 call neigh%iNeighbourWin%allocate_shared(env%mpi%nodeComm, dataLength,&
 & neigh%iNeighbourMemory)
 neigh%iNeighbour(0:maxNeighbour,1:nAtom) => neigh%iNeighbourMemory(1:dataLength)
 maxNeighbourLocal = min(ubound(iNeighbour, dim=1), maxNeighbour)
 call neigh%iNeighbourWin%lock()
 neigh%iNeighbour(1:maxNeighbourLocal,startAtom:endAtom) =&
 & iNeighbour(1:maxNeighbourLocal,startAtom:endAtom)
 if (maxNeighbourLocal < maxNeighbour) then
 neigh%iNeighbour(maxNeighbourLocal+1:maxNeighbour,startAtom:endAtom) = 0
 end if
 call neigh%iNeighbourWin%sync()
 call neigh%iNeighbourWin%unlock()
#:endif

Part of the neighbour algorithm
● Storage in shared memory
● Neighbour generation similar

to Hybrid MPI-OMP loop, but
purely MPI (not shown)

Node internal communicator (if possible)

release

Clean out
old data

Allocate new

locking
Store local part
in shared window

Use in DFTB+

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

17

Need to solve some problems with conjugate gradient (CG), for multiple
right sides (i.e. A X = B), and want to product DFTB+ sparse format
matrices directly with distributed 2D BLACS matrices:
● Inversion of overlap S S-1 = 1 as S-1 is reasonably dense in mid-size

systems.
● Sternheimer response properties, solving H C’ = H’ C for response of

wavefunction due to H’ (optionally with a projection onto virtual states).

Already have serial/OMP code for CG with multiple RHS (for response
calculations, drops scaling from N3 to ~N2.2 with moderate sparsity at
Nbasis~4000 functions). CG requires multiple SYMM operations.

Pattern 3) Redistribute for easy OMP WIP

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

18

Data distribution

V. W.-z. Yu et al. Comp. Phys. Comm. 222, 267-285 (2018)

Cyclic/stripped (b) is amenable for multiple local SYMV operations with no
communication (also allows for a few easy CG optimisations for multiple RHS
converging at different rates).

p?SYMM operation for BLACS
would require communication for
each CG iteration (with >10 steps
depending on convergence and
pre-conditioning).
Usual block cyclic BLACS (a)
optimized for ‘single shot’ matrix
operations.

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

19

p*GEMR2D from the BLACS redistribution routines would
seem to do this perfectly for dense matrices. Set up an
(nbasis, nbasis) matrix with row-like block sizes (nbasis, ~1), then:

● GEMR2D block cyclic → column distributed

● Do CG sparse stuff with local matrix part on each proc.

● GEMR2D column distributed →block cyclic

In principle a p*GEMR2D equivalent could be done simply with
one-sided MPI comms. as the data pattern is pre-known.

BLACS re-distribution

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

20

In DFTB+ we use an (approximately) square BLACS
processor grid, and the default NUMROC leads to major
imbalance in memory (and load) for column distributed:
● (m, m) = nprocs grid

– (nbasis,nbasis) block cyclic pattern, stores ~ nbasis / m elements on
each proc

– (nbasis,nbasis) column pattern matrix, stores n2
basis

 / m element on
the first m procs, and 0 on the other m (m-1) processors.

Balancing problem with NUMROC

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

21

Instead use an (m2, 1) BLACS grid on the same processors
as the usual (m,m) block cyclic distribution, and NUMROC
gives a balanced distribution:
● (m2, 1) processor grid

– (nbasis,nbasis) cyclic, stores ~ nbasis / m elements on each proc.
– Depending on ScaLAPACK block shape, cyclic is either

interleaved (nbasis,~1) or with multiple column together (nbasis,
~nbasis/m).

Balancing with NUMROC

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

22

Pattern 4) Hiding MPI operations inside loops
Current main DFTB+ flow:

Geometry do loop

Determinant do loop

Self-consistency do loop

Used for Δ-SCF. 1 iter. for conventional

Updates structure (optimiser/MD/…). 1 iter. for static

DFTB2/3, xTB. 1 iter. for
DFTB1 (non-SCC)

Determinant loop could also be used for
1) REKS/CI-/… multiple determinant methods
2) Finite difference derivatives wrt external fields
3) Constrained electronic states (undetermined multiplier and “external field”)

1&2 naturally parallel, 3 is sequential (optimization problem). Probably interesting to eventually mix 1, 2
& 3 together in same calculation.

Analogous cases for geometry loop (replica geometries) or self-consistency loop
(determinants/constraints).

WIP

h
t
t
p
s
:
//w

w
w
.g
it
h
u
b
.c
o
m
/d
f
t
b
p
lu
s
/d
f
t
b
p
lu
s

23

Counts for independent cases to process
● Determines group splitting on comm world
● Determines storage copies on local processors

● Iterator which can handle collective operation over groups in split and
global world

● Termination criteria to break loop (constraint case)
● Pre- and post-processing over stored copies
● Case dependant calculation modifications
● Initializer that accepts types for the different sorts of calculations with

their own methods init[Δ-SCF_calc], init[finite_diff_calc], ...
● and combinations init[finite_diff_calc[Δ-SCF_calc]]

● Some load balancing (if pool of case >> groups, shouldn’t be to
complicated for static).

Do loop treated more as a do while

Data structure needs to have
Lends itself to OOP Fortran

Use similar pattern
already elsewhere

h
t
t
p
s
:
//w

w
w
.d
f
t
b
p
lu
s
.o
r
g
/

Status and summary

1) OMP loops broken over MPI COMM

Common use in various places

2) Shared memory windows with MPI

Neighbour maps (so far)

3) Re-distribute BLACS for simple OMP operations

GEMR2D in place, not used seriously yet

4) Loops as hidden MPI COMM operations

WIP collection of PRs to refactor and extend

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

